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Figure 1. ORTEP diagram of the molecular structure of (C5Me5J2Ta2(M-
Br)2(B2H6) (2b) viewed perpendicular to the Ta=Ta bond. Key bond 
distances (A) and bond angles (deg) not given in the text are as follows: 
Ta(I)-Br(I), 2.649 (2); Ta(l)-Br(2), 2.641 (2); Ta(2)-Br(l), 2.627 (2); 
Ta(2)-Br(2), 2.645 (2); Ta(l)-Br(l)-Ta(2), 65.11 (5); Ta(l)-Br(2)-
Ta(2), 64.99 (5). 

bridges (a data set with lower <r's is needed to substantiate this) 
since a Ta'"-B distance can be estimated at 2.35 A.8'15 All 
non-Cp* hydrogens except H(6) were found during refinement, 
with H(6) calculated and placed between Ta(l) /B(l) because 
of the marginally longer Ta( 1 )"-B( 1) separation. Acute TaBrTa 
angles are consistent8 with a Ta=Ta interaction. The T a ( I ) = 
Ta(2) distance is in the single-bond range, whereas a double bond 
of (72C)2 configuration would be expected for B2H6

2" bonded to a 
Cp^Ta(III)2(M-X)2

2+ fragment. Metal-metal bond length-order 
correlations can be unreliable in complexes with bridging ligands, 
and M-M bonds lengthen substantially upon substitution of a 
M-hydride by a /u-halide.8,16 We ascribe the Ta=Ta lengthening 
to the B2H6

2" ligand. 
Addition of 4 equiv of LiBH4 to 1 or 2 equiv to 2 results in 

halogen substitution, H2 elimination, and formation of the violet 
(C5Me4R)2Ta2(B2H6);,, 3, in 60% yield (eq I).17 This complex 
has chemically equivalent C5Me4R groups, through which pass 
a mirror plane, and two 1H resonances for BH, and TaHB groups; 
a singlet is seen in the 11B NMR spectrum. There is no NMR-
detectable exchange between TaHB and BH1 hydrogens, with 
invariant chemical shifts between -83 and 95 0C. These data are 
consistent with symmetric bridging (M-H)2H1B-BH1(M-H)2 

moieties. 
The mechanism of formation of 2 and 3 has been probed in 

several ways. Reaction of excess LiBH4 with a Cp*2Ta2Cl4/ 
(C5Me4Et)2Ta2Cl4 mixture yields Cp*2Ta2(B2H6)2 and 
(C5Me4Et)2Ta2(B2H6J2 with no cross product (C5Me4Et)-
Cp*Ta2(B2H6)2 by NMR, thus ruling out mononuclear inter­
mediates. Kinetic studies by UV/vis show that both reactions 
in eq 1 are first-order in organoditantalum reactant and zero-order 
in LiBH4.

18 The zero-order [LiBH4] dependence and near-zero 
AS* for both reactions suggest that the organoditantalum reactants 
rearrange prior to BH4" reaction, perhaps by opening of two 
M-halides. 

Complexes with B2H6 ligands are rare.13,19"22 Fe2(CO)6(B2-

(15) Huheey, J. E. Inorganic Chemistry, 3rd ed.; Harper and Row: New 
York, 1983; p 260. 

(16) Ting, C; Messerle, L. Inorg. Chem. 1989, 28, 171-173. 
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C20H42B4Ta2: C, 34.92; H, 6.11. Found: C, 34.85; H, 6.45. 1H NMR (S, 
25°, C6D6): -10.5 (br, TaHB), 2.26 (s, Cp*), 4.4 (br, BH); at 75° (partial 
correlation time decoupling): -10.5 (br d, TaHB) and 4.28 (1:1:1:1 q, BH1, 
'yBH=!llOHz). 13CNMR(S1C6D6): 13.5 (s, C5Me5), 109.6 (s, C5Me5). 
11BNMR(S1C6D6): -4.0. Mass spectrum (EI): mje 688, M+. IR(NuJoI, 
cm"1): 2417 (s, BH1), 1784 (s, TaHB); 1800, 1328 for LiBD4-derived product. 

(18) Pseudo-first-order (in Ta2, s"
1) rate constants and activation param­

eters: 1 — 2b (24.7°): 3.04 X 10"4, AH* = 90.5 (1.9) kj mol"1, AS* = -8 
(6) J mol"1 K; 2b — 3 (25.10): 4.54 X 10"5, AH* = 83.1 (5.8), AS' = -49 
(19). 

(19) Reference 3b, pp 44-46, 291; ref 3c, pp 85-6. 
(20) Eadv, C. R.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc, Dalton Trans. 

1977, 477-485. 
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H6)13 possesses an unsymmetrical (/X-H)H1BHBH1(M-H)2
2" group 

and Fe-B bond as shown by NMR. The byproduct Cp*2Nb2-
(B2H6)2 (4% yield), from synthesis23 of Cp*2Nb(BH4), possesses 
a structure22 analogous to 3 and presumably arises from reaction 
of BH4" with adventitious Cp*2Nb2Cl4 formed under the reducing 
conditions. 

The dimetalladiboranes 2 and 3 are novel in several aspects: 
(1) they are obtained from BH4", which shows that early metal 
dinuclear complexes can act as templates for B-H activation and 
BH4" oligomerization;3a'24 (2) the isoelectronic relationships be­
tween BH4" and CH4 and between the arachno anion B2H6

2" and 
C2H6 suggest that the formation of 2 or 3 can serve as models 
for dehydrodimerization of CH4 to H3CCH3 and that 2 and 3 are 
structural models25 for C2H6 surface coordination; (3) they are 
novel examples of early-transition-metal metallaboranes with low 
boron content, an unexplored area (other than BH4" and Group 
6 B3H8" complexes.3b'26). 
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Carbohydrate derivatives, because of their highly functionalized 
nature, have been favorite substrates for testing the viability of 
free-radical reactions for synthetic operations.3"8 By corollary, 
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X = Y 

favoured 

X-Y 

such procedures are particularly well suited for carbohydrate 
manipulations because of their mildness,9 their ability to tolerate 
unprotected hydroxy groups, and the attendant low incidence of 
i8-elimination of oxygen functionalities.10 The unsaturated sugar 
derivatives, known as glycals, which are commercially available 
or readily prepared, are popular starting materials for synthesizing 
modified sugars" or natural product chirons.12 However, we are 
unaware of any studies of carbon-centered radical addition to these 
substrates. We report herein some recent studies relating to the 
potential of such processes for ready access to versatile poly-
functionalized C-glycosyl derivatives through serial radical cy-
clizations.13 

Although intermolecular addition of a nucleophilic, carbon-
centered radical to an electron rich vinyl ether is not favored,14 

studies by Newcomb15 and Beckwith16 have shown that intra­
molecular versions proceed at rates which are comparable to those 
of the corresponding reaction of olefins.29 In the case of the cyclic 
ether 1, the radical formed by ring closure, 2, is (a) stabilized17,18 

and (b) susceptible to facial selectivity in its reactions not only 
because of normal steric factors but also because of the radical 
anomeric effect.19,20 Thus, as a result of the latter, addition from 
the a-face, anti to the lone pair on the ring oxygen,19d is preferred. 
Trapping of intermediate 2 by a suitable reagent, X = Y, should 
therefore afford 3, in which stereocontrolled, vicinal 1,2-substi-
tution of the glycal double bond has occurred. 

Our first task was to demonstrate that the first step could be 
carried out efficiently. The readily available glycals 4a21 and 5a22 

were converted into the mixed acetals 4b and 5b, respectively, using 
the method of Stork23 and Ueno.24 Treatment of 4b and 5b with 
tri-rc-butyltin hydride and AIBN in benzene solutions afforded 
the bicyclic compounds 6a and 7a in 85% and 80% yields, re­
spectively, which showed that the intramolecular addition step 
could be carried out efficiently. 

The reaction was then repeated on compound 4b in the presence 
of a 10-fold excess of acrylonitrile. The C-glycosyl compounds 
6b were obtained in 76% yield without evidence of the reduced 
products 6a. Replacing the bromide of 4b with iodine25 prior to 
cyclization improved the yield of 6b to 87%. 

Attempts to trap the radical intermediate with tertiary bu-
tylisocyanide under similar conditions, or under the conditions 
recommended by Stork26 (Bu3SnCl, NaCNBH3, tBuOH), af­
forded a mixture of the glycosyl cyanide 6c and the reduced 
product 6a in 1.4:1 ratio. 

Another example of the ready introduction of a functionalized 
alkyl substituent at Cl was obtained by using allyl tributyltin as 
a radical trap in an SH2' process,5 which afforded 6d in 70% yield. 
Evidence for the rapid rate of the intramolecular cyclization step 
1 —* 2 in this experiment comes from the failure to detect products 
from the reaction of 1 with allyltributyltin.27 

A final example involves using the hex-2-enopyranosid-4-ulose 
828 as the radical trap (Scheme III). This substrate has often 
been used in this laboratory for a variety of synthetic and 
mechanistic studies involving radical reactions.10a_d In the present 
study, isolation of the highly functionalized product, 9 in 70% yield, 
is a most encouraging result. 
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"(i) Ethyl vinyl ether (9 equiv), bromine (6 equiv), methylene chloride, -78 °C 30 min - • room temperature 1 h; then 4 in NEt3 0 °C room 
temperature 3 h; [(ii) (a-c) Bu3SnH (I.I equiv), AIBN (catalyst), syringe pump addition 4 h over 4b (0.01-0.005 M), benzene, 80 0C; (b) acrylo-
nitrile (10 equiv); (c) J-BuNC (20 equiv); (d) allyltrwi-butyltin (2 equiv), AIBN (0.2 equiv), benzene (0.5 M), 80 0C]; (iii) AcOH/H 20 (8:2), room 
temperature 4 h; Ac2O, pyridine room temperature overnight. 
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The configurations at the anomeric center in compounds 6b-d 
and 9 were expected to be a, and this was supported by the range 
of values for J12 = 1.5-3.9 Hz for these compounds. This as­
signment was further verified, as indicated in Scheme II. Although 
the C8 epimers of 6c could not be separated chromatographically, 
hydrolysis and acetylation afforded 10, which was isolated as a 
pure diastereomer. An N O E effect between H2 and H9 endo 
confirmed the a orientation at anomeric center. 

Reactions of 5b were expected to be less stereocontrolled because 
steric effects favor the trans product with (3 anomeric orientation, 
whereas the radical anomeric effect favors a orientation. Indeed, 
products from the trapping experiments gave the anomeric mix­
tures of 7b/7c and 7d/7e in 5:1 and 3:1 ratios, respectively. In 
the case of the former pair, the reduced material 7a was obtained 
in equal amounts as the nitriles 7b/7c. The assignment of the 
(i anomers as the major products was made readily on the basis 
of their 1H N M R spectra. 

Note Added in Proof. Since submission of this manuscript, three 
radical cyclizations involving carbohydrates have appeared: 

(29) For the first example of intramolecular radical addition to an enol 
ether see: Ladlow, M.; Pattenden, G. Tetrahedron Lett. 1984, 25, 4317. 

DeMesmaeker, A.; Hoffmann, P.; Ernst, B. Tetrahedron Lett. 
1988, 29, 6585. DeMesmaeker, A.; Hoffmann, P.; Ernst, B. 
Tetrahedron Lett. 1989, 30, 57. Chapleur, Y.; Moufid, N. J. 
Chem. Soc., Chem. Commun. 1989, 39. 
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The structural diversity and relatively simple electronic structure 
have made copper(II) complexes a spectroscopic favorite.1 

However, metal-centered (d-d) emission of copper(II) complexes 
has only been observed in tetrahedral sites (in ZnS and CdS type 
semiconductors2). The improbability of observable emission in 
six-coordinate copper(II) complexes can be rationalized by the 
existence of a low-lying excited state, arising from the Jahn-Teller 
split component of the (octahedral) 2 r 8 (E g ) state which will be 
strongly coupled with the ground state, providing an efficient 
pathway for radiationless relaxation. Notwithstanding this ar­
gument, we report the unambiguous structured fluorescence for 
copper(II)-doped KZnF 3 and K 2ZnF 4 crystals. 
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